Product references — Potassium

Zhu, K., et al. 2009. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos Int., 20 (2), 335–340. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18575949 (accessed 01.12.2009).

[No authors listed.] 2008. Potassium may help fight osteoporosis. Potassium citrate increases bone-beneficial calcium retention. Health News, Suppl., 9. URL (no abstract available): http://www.ncbi.nlm.nih.gov/pubmed/18998610 (accessed 12.22.2008).

Ceglia, L., et al. 2008. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J. Clin. Endocrinol. Metab. http://www.ncbi.nlm.nih.gov/pubmed/19050051 (accessed 12.22.2008).

Dawson–Hughes, B., et al. 2008. Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J. Clin. Endocrinol. Metab. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18940881 (accessed 12.22.2008).

Lanham–New, S. 2008. The balance of bone health: Tipping the scales in favor of potassium-rich, bicarbonate-rich foods. J. Nutr., 138 (1), 172S–177S. Review. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18156420 (accessed 12.22.2008).

Macdonald, H., et al. 2008. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: A randomized controlled trial. Am. J. Clin. Nutr., 88 (2), 465–474. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18689384 (accessed 12.22.2008).

Mardon, J., et al. 2008. Long-term intake of a high-protein diet with or without potassium citrate modulates acid–base metabolism, but not bone status, in male rats. J. Nutr., 138 (4), 718–724. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18356326 (accessed 12.22.2008).

Thorpe, M., et al. 2008. A positive association of lumbar spine bone mineral density with dietary protein is suppressed by a negative association with protein sulfur. J. Nutr., 138 (1), 80–85. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18156408 (accessed 12.22.2008).

Tylavsky, F., et al. 2008. The importance of calcium, potassium, and acid-base homeostasis in bone health and osteoporosis prevention. J. Nutr., 138 (1), 164S–165S. URL (no abstract available): http://www.ncbi.nlm.nih.gov/pubmed/18156418 (accessed 12.22.2008).

Zhu, K., et al. 2008. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos. Int. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18575949 (accessed 12.22.2008).

McCormick, R. 2007. Osteoporosis: Integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern. Med. Rev., 12 (2), 113–145. Review. URL (PDF): http://www.thorne.com/altmedrev/.fulltext/12/2/113.pdf (accessed 12.22.2008).

Jehle, S., et al. 2006. Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J. Am. Soc. Nephrol., 17 (11), 3213–3222. URL: http://jasn.asnjournals.org/cgi/reprint/17/11/3213 (accessed 01.02.2009).

Sakhaee, K., et al. 2005. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J. Clin. Endocrinol. Metab., 90 (6), 3528–3533. URL: http://jcem.endojournals.org/cgi/content/full/90/6/3528 (accessed 12.22.2008).

Marangella, M., et al. 2004. Effects of potassium citrate supplementation on bone metabolism. Calcif. Tissue Int., 74 (4), 220–335. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15255069 (accessed 01.02.2009).

Sellmeyer, D., et al. 2002. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J. Clin. Endocrinol. Metab., 87 (5), 2008–2012. URL: http://jcem.endojournals.org/cgi/content/full/87/5/2008 (accessed 12.22.2008).

Frassetto, L., et al. 2001. Diet, evolution and aging — the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur. J. Nutr., 40 (5), 200–213. URL (abstract): http://www.ncbi/nlm.nih/gov/pubmed/11842945 (accessed 12.29.2008).

Morris, R., et al. 1999. Normotensive salt-sensitivity: Effects of race and dietary potassium. Hypertension, 33 (1), 18–23. URL: http://hyper.ahajournals.org/cgi/content/abstract/33/1/18 (accessed 12.22.2008).

Bushinsky, D., et al. 1997. Decreased potassium stimulates bone resorption. Am. J. Physiol., 272 (6 Pt. 2), F774–F780. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9227639 (accessed 12.22.2008).

Lemann, J., et al. 1991. Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults. Kidney Int., 39 (5), 973–983. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1648646 (accessed 12.22.2008).

Lemann, J., et al. 1989. Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int., 35 (2), 688–695. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2540373 (accessed 12.22.2008).

Bell, R., et al. 1992. The influence of NaCl and KCl on urinary calcium excretion in healthy young women. Nutr. Res., 12, 17–26. URL (abstract): http://grande.nal.usda.gov/ibids/index.php?mode2=detail&origin=ibids_references&therow=415351 (accessed 12.22.2008).