Product references — Potassium
Zhu, K., et al. 2009. The effects of high potassium consumption on bone mineral
density in a prospective cohort study of elderly postmenopausal women. Osteoporos
Int., 20 (2), 335–340. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18575949
(accessed 01.12.2009).
[No authors listed.] 2008. Potassium may help fight osteoporosis. Potassium citrate
increases bone-beneficial calcium retention. Health News, Suppl., 9. URL
(no abstract available): http://www.ncbi.nlm.nih.gov/pubmed/18998610 (accessed 12.22.2008).
Ceglia, L., et al. 2008. Potassium bicarbonate attenuates the urinary nitrogen excretion
that accompanies an increase in dietary protein and may promote calcium absorption.
J. Clin. Endocrinol. Metab. http://www.ncbi.nlm.nih.gov/pubmed/19050051 (accessed
12.22.2008).
Dawson–Hughes, B., et al. 2008. Treatment with potassium bicarbonate lowers
calcium excretion and bone resorption in older men and women. J. Clin. Endocrinol.
Metab. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18940881
(accessed 12.22.2008).
Lanham–New, S. 2008. The balance of bone health: Tipping the scales in favor
of potassium-rich, bicarbonate-rich foods. J. Nutr., 138 (1), 172S–177S.
Review. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18156420 (accessed 12.22.2008).
Macdonald, H., et al. 2008. Effect of potassium citrate supplementation or increased
fruit and vegetable intake on bone metabolism in healthy postmenopausal women: A
randomized controlled trial. Am. J. Clin. Nutr., 88 (2), 465–474.
URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18689384 (accessed 12.22.2008).
Mardon, J., et al. 2008. Long-term intake of a high-protein diet with or without
potassium citrate modulates acid–base metabolism, but not bone status, in
male rats. J. Nutr., 138 (4), 718–724. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18356326
(accessed 12.22.2008).
Thorpe, M., et al. 2008. A positive association of lumbar spine bone mineral density
with dietary protein is suppressed by a negative association with protein sulfur.
J. Nutr., 138 (1), 80–85. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18156408
(accessed 12.22.2008).
Tylavsky, F., et al. 2008. The importance of calcium, potassium, and acid-base homeostasis
in bone health and osteoporosis prevention. J. Nutr., 138 (1), 164S–165S.
URL (no abstract available): http://www.ncbi.nlm.nih.gov/pubmed/18156418 (accessed
12.22.2008).
Zhu, K., et al. 2008. The effects of high potassium consumption on bone mineral
density in a prospective cohort study of elderly postmenopausal women. Osteoporos.
Int. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18575949
(accessed 12.22.2008).
McCormick, R. 2007. Osteoporosis: Integrating biomarkers and other diagnostic correlates
into the management of bone fragility. Altern. Med. Rev., 12 (2), 113–145.
Review. URL (PDF): http://www.thorne.com/altmedrev/.fulltext/12/2/113.pdf (accessed
12.22.2008).
Jehle, S., et al. 2006. Partial neutralization of the acidogenic Western diet with
potassium citrate increases bone mass in postmenopausal women with osteopenia. J.
Am. Soc. Nephrol., 17 (11), 3213–3222. URL: http://jasn.asnjournals.org/cgi/reprint/17/11/3213
(accessed 01.02.2009).
Sakhaee, K., et al. 2005. Effects of potassium alkali and calcium supplementation
on bone turnover in postmenopausal women. J. Clin. Endocrinol. Metab., 90
(6), 3528–3533. URL: http://jcem.endojournals.org/cgi/content/full/90/6/3528
(accessed 12.22.2008).
Marangella, M., et al. 2004. Effects of potassium citrate supplementation on bone
metabolism. Calcif. Tissue Int., 74 (4), 220–335. URL (abstract):
http://www.ncbi.nlm.nih.gov/pubmed/15255069 (accessed 01.02.2009).
Sellmeyer, D., et al. 2002. Potassium citrate prevents increased urine calcium excretion
and bone resorption induced by a high sodium chloride diet. J. Clin. Endocrinol.
Metab., 87 (5), 2008–2012. URL: http://jcem.endojournals.org/cgi/content/full/87/5/2008
(accessed 12.22.2008).
Frassetto, L., et al. 2001. Diet, evolution and aging — the pathophysiologic
effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride
ratios in the human diet. Eur. J. Nutr., 40 (5), 200–213. URL (abstract):
http://www.ncbi/nlm.nih/gov/pubmed/11842945 (accessed 12.29.2008).
Morris, R., et al. 1999. Normotensive salt-sensitivity: Effects of race and dietary
potassium. Hypertension, 33 (1), 18–23. URL: http://hyper.ahajournals.org/cgi/content/abstract/33/1/18
(accessed 12.22.2008).
Bushinsky, D., et al. 1997. Decreased potassium stimulates bone resorption. Am.
J. Physiol., 272 (6 Pt. 2), F774–F780. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9227639
(accessed 12.22.2008).
Lemann, J., et al. 1991. Potassium administration reduces and potassium deprivation
increases urinary calcium excretion in healthy adults. Kidney Int., 39
(5), 973–983. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1648646 (accessed
12.22.2008).
Lemann, J., et al. 1989. Potassium bicarbonate, but not sodium bicarbonate, reduces
urinary calcium excretion and improves calcium balance in healthy men. Kidney Int.,
35 (2), 688–695. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2540373
(accessed 12.22.2008).
Bell, R., et al. 1992. The influence of NaCl and KCl on urinary calcium excretion
in healthy young women. Nutr. Res., 12, 17–26. URL (abstract): http://grande.nal.usda.gov/ibids/index.php?mode2=detail&origin=ibids_references&therow=415351
(accessed 12.22.2008).