Essentials Weight Loss Program

M-Boost

Our M-Boost is doctor-formulated to be complete, natural, bioavailable and manufactured to pharmaceutical standards.

The following articles and studies, arranged alphabetically, represent a sampling of the research on the constituents of M-Boost.

Vitamin D

Belenchia, A.M., et al. 2013. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr. 97(4):774-81. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23407306 (accessed 05.07.2013).

Biancuzzo, R.M. 2013. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab. 98(3):97-9). URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23386645 (accessed 05.07.2013).

Caron-Jobin, M., et al. 2011. Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity (Silver Spring). 19(7):1335-41. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21527900 (accessed 05.13.2013).

Forsythe, L.K., et al. 2012. Effect of adiposity on vitamin D status and the 25-hydroxychholecalciferol response to supplementation in healthy young and older Irish adults. Br J Nutr. 107(1):126-34. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21733320 (Accessed 05.13.2013).

Fung, G. J., et al. 2012. Vitamin D intake is inversely related to risk of developing metabolic syndrome in African American and white men and women over 20 y: the Coronary Artery Risk Development in Young Adults study. Am J Clin Nutr. 96(1):24-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22648727 (accessed 05.09.2013).

LeBlanc, E.S., et al. 2012. Associations between 25-hydroxyvitamin D and weight gain in elderly women. J Womens Health (Larchmt). 21(10):1066-73, URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22731629 (accessed 05.07.2013).

Manios, Y., et al. Changes in body composition following a dietary and lifestyle intervention trial: the postmenopausal health study. Maturitas. 62(1): 58-65. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19118956 (accessed 05/13/2013).

Nagpal, J., et al. A double-blind, randomized, placebo-controlled trial of the short-term effect of vitamin D3 supplementation on insulin sensitivity in apparently healthy, middle-aged, centrally obese men. Diabet Med. 26(1):19-27. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19125756 (accessed 05.13.2013).

Nazarian, S., et al. Vitamin D3 supplementation improves insulin sensitivity in subjects with impaired fasting glucose. Transl Res. 158(5):276-81. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22005267 (accessed 05.14.2013).

Nikooyeh, B., et al. Daily consumption of vitamin D- or vitamin D + calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr. 93(4): 764-71. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21289226 (accessed 05.13.2013).

Salehpour, A., et al. 2012. Vitamin D3 and the risk of CVD in overweight and obese women: a randomized controlled trial. Br J Nutr. 108(10): 1866-73. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22317756 (accessed 05.13.2013).

Salehpour, A., et al. 2012. A 12-week double-blind randomized clinical trial of vitamin D3 supplementation on body fat mass in healty overweight and obese women. Nutr J. 11:78. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514135/ (accessed 05.07.2013).

Shab-Bidar, S., et al. 2011. Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial. BMC Med. 9:125. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239240/ (accessed 05.13.2013).

Shapses, S.A., et al. 2013. Vitamin D supplementation and calcium absorption during caloric restriction: a randomized double-blind trial. Am J Clin Nutr. 97(3):637-45. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23364004 (accessed 05.06.2013).

Sneve, M., et al. 2008. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocinol. 159(6): 675-84. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19056900 (accessed 05.13.2013).

Tamer, G., et al. 2012. Is vitamin D deficiency an independent risk factor for obesity and abdominal obesity in women? Endokrynol Pol. 63(3):196-201. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22744625 (accessed 05.09.2013).

Yin, X., et al. 2012. Serum 25(OH)D is inversely ossociated with metabolic syndrome risk profile among urban middle-aged Chinese population. Nutr. J. 11:68. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22958612 (accessed 05.07.2013).

Zitterman, A., et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 89(5): 1321-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19321573 (accessed 05.13.2013).

B Vitamins
(Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B 12, Biotin)

Bailey, L.. & Gregory, J. 1999. Folate metabolism and requirements. J. Nutr., 129, 779–782.

Ball, G. 2006. Chapter 11: Pantothenic Acid. In Vitamins in Foods: Analysis, Bioavailability, and Stability, 211–219. Boca Raton, FL: CRC Press.

Baez–Saldana, A., et al. 2004. Effects of biotin on pyruvate carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am. J. Clin. Nutr., 79, 238–243.

Baily, S. E. and Ayling, J. E. 2009. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci USA., 106(35): 15424-15429. doi: 10.1073/pnas.0902072106. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730961/?tool=pubmed (accessed 5/14/2012).

Baker, H., et al. 1975. Inability of chronic alcoholics with liver disease to use food as a source of folates, thiamin and vitamin B6. Am. J. Clin. Nutr., 28, 1377–1380.

Bart, S. Sr., et al. 2012. Folate status and homocysteine levels during a 24-week oral administration of folate-containign oral contraceptive: a randomized, double-blind, active-controlled, parallel-group, US-based multicenter study. Contraception. 85(1): 42-50. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22067790 (accessed 5/15/2012).

Batra, V., et al. 2010. Enhanced one-carbon flux towards DNA methylation: Effect of dietary methyl supplements against gamma-radiation-induced epigenetic modicationas. Chem Biol Interac., 183(3): 425-33. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19931232 (Accessed 5/15/2012).

Bird, L. M., et al. 2011. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A., 155A(12): 2956-63. doi: 10.1002/ajmg.a.34297. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22002941 (accessed 5/14/2012).

Cagnacci, A., et al. 2009. High-dose short-term folate administration modifies ambulatory blood pressure in postmenopausal women. A placebo-controlled study. Eur J Clin Nutr. 63(10): 1266-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19603054 (accessed 5/14/2012).

Chang, N., et al. 2001. Study of the relation between proton magnetic resonance spectroscopy metabolites in the brain regions and the B vitamin status in alcoholics. Nutr. Res., 21, 811–820.

Clarke, R. 2006. Vitamin B12, folic acid, and the prevention of dementia. NEJM, 354, 2817–2819.

Colombo, V., et al. 1990. Treatment of brittle fingernails and onychoschizia with biotin: Scanning electron microscopy. J. Am. Acad. Dermatol., 23, 1127–1132.

Combs, G., 1992. Vitamin B6 (Chapter 13), and Vitamin B12 (Chapter 17). In The Vitamins: Fundamental Aspects in Nutrition and Health, 331–347; 403–419. San Diego: Academic Press.

Coppen, A., & Bailey, J. 2000. Enhancement of the antidepressant action of fluoxetine by folic acid: A randomised, placebo controlled trial. J. Affect. Disord., 60, 121–130.

Coppen, A., & Bolander-Gouaille, C. 2005. Treatment of depression: Time to consider folic acid and vitamin B12. J. Psychopharm., 19, 59–65.

Crawford, V., et al. 1999. Effects of niacin-bound chromium supplementation on body composition in overweight African-American women. Diab. Obes. Metabol., 1, 331–337.

Cravo, M., et al. 1996. Hyperhomocysteinemia in chronic alcoholism: Correlation with folate, vitamin B-12, and vitamin B-6 status. Am. J. Clin. Nutr., 63, 220–224.

Davis, B., et al. 1982. Enhanced absorption of oral vitamin B12 from a resin ascorbate administered to normal subjects. Manip. Physiol. Ter., 5, 123–127.

Duan, W., et al. 2002. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem., 80, 101–110.

Eussen, S., et al. 2005. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: A dosefinding trial. Arch. Intern. Med., 165, 1167–1172.

Fava, M., and Mischoulon, D. 2009. Folate in depression: efficacy, safety, differences in formulations, and clinical issues. J Clin Psychiatry. 70 Supple 5: 12-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19909688 (accessed 5/14/2012).

Floersheim, G. 1989. [Treatment of brittle fingernails with biotin]. Z. Hautkr., 64, 41–48.

Geohas, J., et al. 2007. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized clinical trial. Am. J. Med. Sci., 333, 145–153.

Godfrey, P. S., et al. 1990. Enhancement of recovery from psychiatric illness by methylfolate. Lancet, 336(8712): 392-5. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1974941 (accessed 5/14/2012).

Greenberg, J. A., and Bell, S. J. 2011. Multivitamin Supplementation During Pregnancy: Emphasis on Folic Acid and L-Methylfolate. Rev Obstet Gynecol., 4 (3-4): 126-7. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250974/?tool=pubmed (accessed 5/14/2012).

Hassing, L., et al. 1999. Further evidence on the effects of vitamin B12 and folate levels on episodic memory functioning: A population-based study of healthy very old adults. Biol. Psych., 45, 1472–1480.

Hintikka, J., et al. 2003. High vitamin B12 level and good treatment outcome may be associated in major depressive disorder. BMC Psych., 3, 17.

Hochman, L., et al. 1993. Brittle nails: Response to daily biotin supplementation. Cutis, 51, 303–305

Kelly, P., et al. 1997. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr., 65(6): 1790-5. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9174474 (accessed 5/14/2012).

Koutsikos, D., et al. 1990. Biotin for diabetic peripheral neuropathy. Biomed. Pharmacother., 44, 511–514.

Lamers, Y., et al. 2006. Red blood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am J Clin Nutr. 84(1): 156-61.

Lee, B., et al. 2004. Folic acid and vitamin B12 are more effective than vitamin B6 in lowering fasting plasma homocysteine concentration in patients with coronary artery disease. Eur. J. Clin. Nutr., 58, 481–487.

Levine, S., & Saltzman, A. 2004. Pyridoxine (vitamin B6) neurotoxicity: Enhancement by protein-deficient diet. J. Appl. Toxicol., 24, 497–500.

Lewerin, C., et al. 2003. Reduction of plasma homocysteine and serum methylmalonate concentrations in apparently healthy elderly subjects after treatment with folic acid, vitamin B12 and vitamin B6: A randomised trial. Eur. J. Clin. Nutr., 57, 1426–1436.

Maas, A., et al. 1998. Riboflavin and vitamin B-6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people. Am. J. Clin. Nutr. 68, 389–395.

Masse, P., et al. 1998. A cartilage matrix deficiency experimentally induced by vitamin B6 deficiency. Proc. Soc. Exp. Biol. Med., 217, 97–103.

Masse, P., et al. 1990. Morphological abnormalities in vitamin B6 deficient tarsometatarsal chick cartilage. Scanning Microsc., 4, 667–673; discussion 674.

Masse, P., et al. 1994. Vitamin B6 deficiency experimentally-induced bone and joint disorder: Microscopic, radiographic and biochemical evidence. Br. J. Nutr., 71: 919–932.

McCormick, D. 1975. Biotin. Nutr. Rev., 33, 97–102.

Meshkin, B., Blum, K. 2007. Folate nutrigenetics: a convergence of dietary folate metabolism, folic acid supplementation, and folate antagonist pharmacogenetics. Drug Metab Lett., 1(1): 55-60. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19356019 (accessed 5/14/2012).

Miller, J. 2004. Folate, cognition, and depression in the era of folic acid fortification. J. Food Sci., 69, 61–64.

Misir, R., & Blair, R. 1986. Effect of biotin supplementation of a barley-wheat diet on restoration of healthy feet, legs and skin of biotin deficient sows. Res. Vet. Sci., 40, 212-218.

Mock, D., et al. 2002. Marginal biotin deficiency during normal pregnancy. Am. J. Clin. Nutr., 75, 295–299.

Mock, D. 1991. Skin manifestations of biotin deficiency. Semin. Dermatol., 10, 296-302.

Morris, M. 2002. Folate, homocysteine, and neurological function. Nutr. Clin. Care, 5, 124–132.

Nyhan, W. 1987. Inborn errors of biotin metabolism. Arch. Dermatol., 123, 1696–1698a.

Pietrzik, K., et al. 2010. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet., 49(8): 535-48. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20608755 (accessed 5/14/2012).

Preuss, H., et al. 2000. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: A pilot study. J. Med., 31, 227–246.

Rampersaud, G., et al. 2003. Folate: A key to optimizing health and reducing disease risk in the elderly. J. Am. Coll. Nutr., 22, 1–8.

Revilla–Monsalve, C., et al. 2006. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed. Pharmacother., 60, 182–185.

Reynolds, T., et al. 1992. Hip fracture patients may be vitamin B6 deficient. Controlled study of serum pyridoxal-5’-phosphate. Acta Orthop. Scand., 63, 635–638.

Riggs, K., et al. 1996. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am. J. Clin. Nutr., 63, 306–314.

Scambi, C., et al. 2009. Preliminary evidence for cell membrane amelioration in children with cystic fibrosis by 5-MTHF and vitamin B12 supplementation: a single arm trial. PLoS One. 4(3):e4782. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19277125 (accessed 5/15/2012).

Sharp, L., Little, J. 2004. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol., 159(5): 423-43. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14977639 (accessed 5/14/2012).

Stabler, S., & Allen, R. 2004. Vitamin B12 deficiency as a worldwide problem. Annu. Rev. Nutr., 24, 299–326.

Van Guelpen, B., et al. 2005. Folate, vitamin B12, and risk of ischemic and hemorrhagic stroke: A prospective, nested case-referent study of plasma concentrations and dietary intake. Stroke, 36, 1426–1431.

Zempleni, J., & Mock, D. 2000. Marginal biotin deficiency is teratogenic. Proc. Soc. Exp. Biol. Med., 223, 14–21.

Zempleni, J., & Mock, D. 1999. Bioavailability of biotin given orally to humans in pharmacologic doses. Am. J. Clin. Nutr., 69, 504–508.

Zhang, H., et al. 1997. Biotin administration improves the impaired glucose tolerance of streptozotocin-induced diabetic Wistar rats. J. Nutr. Sci. Vitaminol. (Tokyo), 43, 271-280.

Calcium

He, Y.H., et al. 2011. The calcium-sensing receptor affects fat accumulation via effects on antilipolytic pathways in adipose tissue of rats fed low-calcium diets. J Nutr. 141(11): 1938-46. URL: http://jn.nutrition.org/content/141/11/1938.long (accessed 06.11.2013).

Josse, A.R., et al. Increased consumption of dairy foods and protein during diet – and exercise-induced weight loss promotes fat mass los and lean mass gain in overweight and obese premenopausal women. J Nutr. 141(9):1626-34. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21775530 (accessed 06.11.2013).

Laraichi, S., et al. 2013. Dietary Supplementation of Calcium may Counteract Obesity in Mice Mediated by Changes in Plasma Fatty Acids. Lipids. June 1, 2013 Epub ahead of print. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23729396 (accessed 06.11.2013).

Lewis, J.R., et al. 2011. Calcium supplementation and the risks of atherosclerotic vascular disease in older women: results of a 5-year RCT and a 4.5-year follow-up. J Bone Miner Res. 26(1): 35-41. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20614474 (accessed 06.11.2013).

Mitri, J., et al. 2011. Effects of vitamin D and calcium supplementation on pancreatic ß cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 94(2): 486-494. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142723/ (accessed 06.11.2013).

Nakamura, K., et al. 2012. Effect of low-dose calcium supplements on bone loss in perimenopausal and postmenopausal Asian women: a randomized controlled trial. J Bone Miner Res. 27(11): 2264-70. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22653713 (accessed 06.11.2013).

Nobre, J.L., et al. 2012. Calcium supplementation prevents obesity, hyperleptinaemia and hyperglycaemia in adult rats programmed by early weaning. Br J Nutr. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22070983 (accessed 06.11.2013).

Nobre, J.L., et al. 2011. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programmed by neonatal nicotine exposure. J Endocrinol. 210(3): 349-59. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21680618 (accessed 06.11.2013).

Perez-Gallardo, L., et al. 2009. Effect of calcium-enriched high-fat diet on calcium, magnesium and zinc retention in mice. Br J Nutr. 101(10): 1463-6. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18986597 (accessed 06.11.2013).

Racovan, M., et al. 2012. Calcium and vitamin D supplementation and incident rheumatoid arthritis: the Women’s Health Initiative Calcium plus Vitamin D trial. Rheumatol Int. 32(12): 3823-30. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22190273 (accessed 06.11.2013).

Rosenblum, J.L., et al. 2012. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr. 95(1): 101-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22170363 (accessed 06.11.2013).

Rossom, R.C., et al. 2012. Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J Am Geriatr Soc. 60(12): 2197-205. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23176129 (accessed 06.11.2013).

Shalileh, M., et al. The influence of calcium supplement on body composition, weight loss and insulin resistance in obese adults receiving low calorie diet. J Res Med Sci. 15(4): 191-201. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21526081 (accessed 06.11.2013).

Torres, M.R., et al. 2010. Effects of a high-calcium energy-reduced diet on abdominal obesity and cardiometabolic risk factors in obese Brazillian subjects. Int J Clin Pract. 64(8): 1076-83. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20642707 (accessed 06.11.2013).

Yanovski, J.A., et al. 2009. Effects of calcium supplementation on body weight and adiposity in overweidht and obese adults: a randomized trial. Ann Intern Med. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19528561 (accessed 06.11.2013).

Yin, J., et al. 2010. Calcium supplementation for 2 years improves bone mineral accretion and lean body mass in Chinese adolescents. Asia Pac J Clin Nutr. 19(2): 152-60. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20460227 (accessed 06.11.2013).

Zemel, M.B. 2004. Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr. 79(5): 907S-912S. URL: http://ajcn.nutrition.org/content/79/5/907S.long (accessed 06.11.2013).

Magnesium

Abayomi, A.I., et al. 2011. Effect of Magnesium pre-treatment on alloxan induced hyperglycemia in rats. Afr Health Sci. 11(1): 79-84. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21572861 (accessed 06.11.2013).

Abdelmalik, P.A., et al. 2012. Magnesium as an effective adjunct therapy for drug resistant seizures. Can J Neurol Sci. 39(3): 323-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22547512 (accessed 06.11.2013).

Abbott, L., & Rude, R. 1993. Clinical manifestations of magnesium deficiency. Miner. Electrolyte Metab. 19, 314–322.

Carpenter, T.O., et al. 2006. A randomized controlled study of effets of dietary magnesium oxide supplementation on bone mineral content in healthy girls. J Clin Endocrinol Metab. 91(12):4866-72. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17018656 (accessed 06.11.2013).

Chacko, S.A., et al. 2011. Magesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: a randomized, double-blind, controlled, crossover trial in overweight individuals. Am J Clin Nutr. 93(2): 463-473. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021435/ (accessed 06.11.2013).

Creedon, A., et al. 1999. The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. Br. J. Nutr., 82, 63–71.

Dreosti, I. 1995. Magnesium status and health. Nutr. Rev., 53, S23–S27.

Farvid, M.S., et al. 2011. Improving neuropathy scores in type 2 diabetic patients using micronutrients supplementation. Diabetes Res Clin Pract. 93(1): 86-94. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21496936 (accessed 06.11.2013).

Hadjistavri, L.S., et al. 2010. Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit. 16(6): CR307-312. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20531272 (accessed 06.11.2013).

Hartwig, A. 2001. Role of magnesium in genomic stability. Mutat. Res., 475, 113–121.

Higdon, J. & Drake, V.J., 2007. The Linus Pauling Institute, Oregon State University. Web (http://lpi.oregonstate.edu/infocenter/minerals/magnesium/) (accessed 06.13.2013).

Houston, M. 2011. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 13(11): 843-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22051430 (accessed 06.11.2013).

Ige, O.A., et al. 2010. Pretreatment effect of magnesium on alloxan induced hyperglycemia in rats. Afr J Med Med Sci. 39 Suppl:103-7 URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22416651 (accessed 06.10.2013).

Lal, J., et al. 2003. Effect of oral magnesium supplementation on lipid profile and blood glucose of patients with type 2 diabetes mellitus. J Assoc Physicians India. 51:37-42. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12693452 (accessed 06.11.2013).

Luoma, H., et al. 1998. Seven weeks feeding of magnesium and fluoride modifies plasma lipids of hypercholesterolaemic rats in late growth phase. Magnes Res. 11(4): 271-82. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9884985 (accessed 06.11.2013).

McCarty, M.F. 2005. Nutraceutical resources for diabetes prevention – an update. Med Hypotheses. 64(1): 151-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15533633 (accessed 06.10.2013).

Mooren, F.C., et al. 2011. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects – a double-blind, placebo-controlled, randomized trial. Diabetes Obes Metab. 13(3): 281-4. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21205110 (accessed 06.11.2013).

Mountokalakis, T. 1987. Effects of aging, chronic disease, and multiple supplements on magnesium requirements. Magnesium, 6, 5-11.

Nielson, F.H., et al. 2010. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res. 23(4): 158-68. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21199787 (accessed 06.11.2013).

Nielsen, F.H., et al. 2007. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J Am Coll Nutr. 26(2):121-32. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17536123 (accessed 06.10.2013)/

Olatunji, L.A. & Soladoye, A.O. 2007. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats. Afr J Med Med Sci. 36(2): 155-61. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19205579 (accessed 06.11.2013).

Paolisso, G., et al. 1992. Daily magnesium supplements improves glucose handling in elderly subjects. Am J Clin Nutr. 55(6): 1161-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1595589 (accessed 06.11.2013).

Rodriguez-Moran, M., et al. 2011. The role of magnesium in type 2 diabetes: a brief based-clinical review. Magnes Res. 24(4):156-62. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22198525 (accessed 06.11.2013).

Rasmussen, H.S., et al. 1989. Influence of magnesium substitution therapy on blood lipid composition in patients with ischemic heart disease. A double-blind, placebo controlled study. Arch Intern Med. 149(5): 1050-3. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2719498 (accessed 06.11.2013).

Shivakumar, K., & Kumar, B. 1997. Magnesium deficiency enhances oxidative stress and collagen synthesis in vivo in the aorta of rats. Int. J. Biochem. Cell. Biol., 29, 1273–1278.

Sojka, J., & Weaver, C. 1995. Magnesium supplementation and osteoporosis. Nutr. Rev., 53, 71–74.

Song, Y., et al. 2006. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med. 23(10): 1050-6. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&dopt=Citation&list_uids=16978367 (accessed 06.05.2013).

Terighat Esfanjani, A., et al. 2012. The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol Trace Elem Res. 150(1-3):42-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22895810 (accessed 06.11.2013).

Virag, V., et al. 2011. [Effects of magnesium supplementation on calcium and magnesium levels, and redox homeostasis in normolipidemic and food-induced hyperlipidemic rats]. Orv Hetil. 152(27): 1075-81. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21676674 (accessed 06.11.2013).

Volpe, S., et al. 1993. The relationship between boron and magnesium status and bone mineral density in the human: A review. Magnesium Res., 6, 291–296.

Chromium

Sharma, S., et al. 2011. Beneficial effect of chromium supplementation on glucose, HbA(1)C and lipid variables in individuals with newly onset type-2 diabetes. J. Trace Elem. Med. Biol. [Epub ahead of print] URL: http://www.ncbi.nlm.nih.gov/pubmed/21570271 (accessed 06.20.2011).

Albarracin, C., et al. 2008. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab. Res. Rev., 24 (1), 41-51. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17506119 (accessed 10.25.2011).

Anton, S., et al. 2008. Effects of chromium picolinate on food intake and satiety. Diabetes Technol. Ther., 10 (5), 405-412. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753428/?tool=pubmed (accessed 10.25.2011).

Lukaski, H., et al. 2007. Chromium picolinate supplementation in women: Effects on body weight, composition, and iron status. Nutrition, 23 (3), 187-195. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17291720 (accessed 10.25.2011).

Broadhurst, C., & Domenico, P. 2006. Clinical studies on chromium picolinate supplementation in diabetes mellitus — a review. Diabetes Technol. Ther., 8 (6), 677-687. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17109600 (accessed 10.25.2011).

Singer, G., & Geohas, J. 2006. The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized trial. Diabetes Technol. Ther., 8 (6), 636-643. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17109595 (accessed 10.25.2011).

Wang, Z., et al. 2006. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats. J. Nutr., 136 (2), 415-420. URL: http://jn.nutrition.org/content/136/2/415.long (accessed 10.25.2011).

Docherty, J., et al. 2005. A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: Effect on carbohydrate craving. J. Psychiatr. Pract., 11 (5), 302-314. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16184071 (accessed 10.25.2011).

Vincent, J. 2003. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med., 33 (3), 213-230. URL (abstract): (accessed 10.25.2011).

Cefalu, W., et al. 2002. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr., 132 (6), 1107–1114. URL: http://jn.nutrition.org/content/132/6/1107.long (accessed 10.25.2011).

Sphaeranthus indicus

Bafna, A.R. & Mishra, S.H. 2007. Immunomodulatory activity of petroleum ether extract of lfower heads of Pshaeranthus indicus Linn. J Herb Pharmacother. 7(1): 25-37. URL (astract): http://www.ncbi.nlm.nih.gov/pubmed/17594985 (accessed 05/02/2013).

Chakrabarti, D., et al. 2012. NPS31807, a standardized extract from Sphaeranthus indicus, inhibits inflammatory, migratory and proliferative activity in keratinocytes and immune cells. Pharmacology & Pharmacy. 3:178-194. URL: http://www.scirp.org/journal/PaperInformation.aspx?paperID=18720& (accessed 05/02/2013).

Doss, A. 2009. Preliminary phytochemical screening of some Indian Medicinal Plants. Anc Sci Life. 29(2): 12-6. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/22557345 (accessed 03/19/2013).

Fonseca, L.c., et al. 2010. 7-hydroxyfullanolide, a sesquiterpene lactone, inhibits pro-inflammatory cytokine production from immune cells and is orally efficacious in animal models of inflammation. Eur J Pharmacol. 644(1-3): 220-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20621086 (accessed 05/02/2013).

Galani, V. J., et al. 2010. Sphaeranthus indicus Linn.: A phytopharmacological review. Int J Ayurveda Res. 1 (4): 247-253. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059449/ (accessed 03/19/2013).

Ghaisas, M., et al. 2010. Preventive effect of Phaeranthus indicus during progression of glucocorticoid-induced insulin resistance in mice. Pharm Biol. 48(12): 1371-5. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/20738176 (accessed 3/19/2013).

Johri, R., et al. 2009. Antidiabetic effects of polyherbal preparation as compared to standard allopathic drugs in alloxan induced diabetic albino rats. Biochemical and Cellular Archives. 9(1): 55-62. URL (abstract only): http://www.cabdirect.org/abstracts/20093125920.html;jsessionid=D4572405B9290CBDBE272A4A0640793F?gitCommit=4.13.20-5-ga6ad01a (accessed 03/19/2013).

Kumar, V.P., et al. 2006. Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol. 107(2): 182-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16678369 (accessed 05/02/2013).

Lau, F.C., et al. 2011. Efficacy and tolerability of Meratrim – a novel formulation for weight management: Results from two, randomized, double-blind, placebo-controlled clinical studies. Presented 10/3/2011 at the 29th Annual Obesity Society Annual Meeting. Poster number 590-P.

Lau, C.F., et al. 2011. Efficacy and tolerability of Merastin™ - a novel herbal formulation for weight management: a randomized, double-blind, placebo-controlled clinical study. FASEB J. 25: (Meeting Abstract Supplement) 601.9. Presented at Experimental Biology 2011, Washington, DC, April 10,2011 – Program No.601.9, Poster A278. URL (abstract): http://www.fasebj.org/cgi/content/meeting_abstract/25/1_MeetingAbstracts/601.9 (accessed 04/16/2013).

Mathew, J. E., et al. 2012. Effect of ethanol extract on Sphaeranthus indicus on cisplatin-induced nephrotoxicity in rats. . Nat Prod Res. 26(10): 933-8. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/21790496 (accessed 03/19/2013).

Mishra, B.B., et al. 2007. A novel flavonoid C-glycoside from Sphaeranthus indicus L. (family Compositae). Molecules. 12(10): 2288-91. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17978758 & http://www.mdpi.com/1420-3049/12/10/2288 (full text) (accessed 05/01/2013).

Nahata, A., et al. 2012. Sphaeranthus indicus Induces Apoptosis Through Mitochrondrial-Dependent Pathway in HL-60 Cells and Exerts Cytotoxic Potential on Several Human Cancer Cell Lines. Integr Cancer Ther. [Epub ahead of print]. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/22914874 (accessed 03/19/2013).

Nahata, A., Dixit, V. K. 2011. Sphaeranthus indicus attenuates testosterone induced prostatic hypertrophy in albino rats. Phytother Res. 25(12): 1839-48. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/21503998 (accessed 03/19/2013).

Nanda, B. K., et al. 2010. Anti-inflammatory activity of whole parts of Sphaeranthus indicus Linn. Der Pharmacia Lettre. 2 (1) 181-188. URL: http://scholarsresearchlibrary.com/DPL-vol2-iss1/DerPharmaciaLettre-%202010-2-1-181-188.pdf (accessed 03/19/2019).

Patel, M. B., Amin, D. 2012. Sphaeranthus indicus flower derived constituents exhibits synergistic effect against acetylcholinesterase and possess potential antiamnestic activity. J Complement Integr Med. 9: Aricle 23. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/23023564 (accessed 03/19/2013).

Pande V V, Dubey S. 2009. Antihyperlipidemic activity of Sphaeranthus indicus on atherogenic diet induced hyperlipidemia in rats. Int J Green Pharm. 3:159-61. URL: http://www.greenpharmacy.info/text.asp?2009/3/2/159/54911 (accessed 03/19/2013).

Prabhu, K. S., et al. 2008. Antidiabetic properties of the alcoholic extract of Sphaeranthus indicus in streptozotocin-nicotinamide diabetic rats. J Pharm Pharmacol. 60(7): 909-16. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/18549678 (accessed 03/19/2013).

Ramachandran, S., et al. 2011. Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers. Evid Based Complement Alternat Med. Pii: 571721. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/20953435 (accessed 03/19/2013).

Schneider, R. H., et al. 2002. Disease prevention and health promotion in the aging with a traditional system of natural medicine – Maharishi Vedic Medicine (MVM). J Aging Health. 14(1): 57-78. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211377/ (accessed 03/19/2013).

Sharma, R. K., Patki, P. S. 2010. Double-blind, placebo-controlled clinical evaluation of an Ayurvedic formulation (GlucoCare capsules) in non-insulin dependent diabetes mellitus. J Ayurvedic Integr Med. 1 (1): 45-51. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149392/ (accessed 03/19/2013).

Shirwaikar, A., et al. 2006. In vitro antioxidant studies of Sphaeranthus indicus (Linn). Indian J Exp Biol. 44 (12): 993-6. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/17176673 (accessed 03/19/2013.

Srinivasan, K. K., et al. 2008. Effect of Sphaeranthus indicus on gentamicin induced acute renal failure in rats. Indian J Pharmacol. 40(Suppl 2, #123): S66–S91. URL (abstract only): http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086144/ (accessed 03/19/2013).

Stern, J.S., et al. 2012. Efficacy and tolerability of a novel herbal formulation for weight management. Obesity. Epub ahead of print. URL (abstract): http://onlinelibrary.wiley.com/doi/10.1002/oby.20211/abstract (accessed 04/16/2013).

Garcinia mangostana

Bumrungpert, A., Et al. 2010. Xanthones from mangosteen inhibit inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. J Nutr. 140(4): 842-7. URL (abract): http://www.ncbi.nlm.nih.gov/pubmed/20181789 (accessed 04/23/2013).

Bumrungpert, A., et al. 2009. Xanthones from Mangosteen Prevent Lipopolysaccharide-Mediated Inflammation and Insulin Resistance in Primary Cultures of Human Adipocytes. The Journal of Nutrition. 139 (6) 1185-1191. URL (abstract only): http://jn.nutrition.org/content/139/6/1185.short (accessed 3/26/2013).

Chomnawang, M.T., et al. 2007. Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes. Fitoterapia. 78(6): 401-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17644272 (accessed 04/24/2013).

Devalaraja, S., et al. 2011. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Research International. 44 (7): 1856-1865. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S0963996911002250 (accessed 3/26/2013).

Heymsfield, S.B., et al. 1998. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA. 280(18): 1596-600. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9820262 (accessed 04/16/2013).

Jena, B.S., et al. 2002. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J Agric Food Chem. 50(1):10-22. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11754536 (accessed 04/16/2013).

Jiang, H. Z., et al. 2010. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorganic & Medicinal Chemistry Letters. 20(20): 6045-47. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S0960894X10011844 (accessed 03/20/2013).

Jujun, P., et al. 2008. Acute and Repeated Dose 28-Day Oral Toxicity Study of Garcinia manostana Linn. Rind Extract. J. Nat. Sci. 7(2): 199-208. URL: http://www.thaiscience.info/journals/Article/Acute%20and%20repeated%20dose%2028-day%20oral%20toxicity%20study%20of%20garcinia%20mangostana%20linn.%20rind%20extract.pdf (accessed 3/26/2013).

Lau, F.C., et al. 2011. Efficacy and tolerability of Meratrim – a novel formulation for weight management: Results from two, randomized, double-blind, placebo-controlled clinical studies. Presented 10/3/2011 at the 29th Annual Obesity Society Annual Meeting. Poster number 590-P.

Lau, C.F., et al. 2011. Efficacy and tolerability of Merastin™ - a novel herbal formulation for weight management: a randomized, double-blind, placebo-controlled clinical study. FASEB J. 25: (Meeting Abstract Supplement) 601.9. Presented at Experimental Biology 2011, Washington, DC, April 10,2011 – Program No.601.9, Poster A278. URL (abstract): http://www.fasebj.org/cgi/content/meeting_abstract/25/1_MeetingAbstracts/601.9 (accessed 04/16/2013).

Leonhardt, M. & Langhans, W. 2002. Hydroxycitrate has long-term effects on feeding behavior, body weight regain and metabolism after body weight loss in male rats. J Nutr. 132(7): 1977-82. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12097679 (accessed 04/24/2013).

Leontowicz, H., et al. 2006. Bioactive properties of Snake fruit (Salacca edulis Reinw) and Mangosteen (Garcinia mangostana) and their influence on plasma lipid profile and antioxidant activity in rats fed cholesterol. European Food Research and Technology. 223(5): 697-703. URL (abstract only): http://link.springer.com/article/10.1007%2Fs00217-006-0255-7?LI=true# (accessed 03/20/2013).

Loo, A.E. & Huang, D. 2007. Assay-guided fractionation study of alpha-amylase inhibitors from Garcinia mangostana pericarp. J Agric Food Chem. 55(24): 9805-10. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17960880 (accessed 04/24/2013).

Manaharan, T., et al. 2012. Tropical Plant Extracts as Potential Antihyperglycemic Agents. Molecules. 17(5): 5915-5923. URL: http://www.mdpi.com/1420-3049/17/5/5915 (accessed 3/26/2013).

Mattes, R.D. & Bormann, L. 2000.0 Effects of (-)-hydroxycitric acid on appetite variables. Physiol Behav. 71(1-2):87-94. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11134690 (accessed 04/16/2013).

Moongkarndi, P., et al. 2004. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol. 90(1): 161-6. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14698525 (accessed 04/24/2013).

Ngawhirunpat, T., et al. 2010. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana). Pharm Biol. 48(1): 55-62. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20645756 (accessed 04/23/2013).

Pedraza-Chaverri, J., et al. 2008. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol. 46(10): 3227-39. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/18725264 (accessed 03/20/2013).

Preuss, H.G., et al. 2004. Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes Metab. 6(3):171-80. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15056124?dopt=Abstract (accessed 04/16/2013).

Rao, R.N. & Sakariah, K.K. 1988. Lipid-lowering and antiobesity effect of (--) – hydroxycitric acid. Nutrition Research. 8(2): 209-212. URL (abstract): http://www.sciencedirect.com/science/article/pii/S0271531788800241 (04/24/2013).

Ryu, H. W., et al. 2011. Alpha-glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry. 72 (17): 2148-2154. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S0031942211003736 (accessed 3/26/2013).

Stern, J.S., et al. 2012. Efficacy and tolerability of a novel herbal formulation for weight management. Obesity. Epub ahead of print. URL (abstract): http://onlinelibrary.wiley.com/doi/10.1002/oby.20211/abstract (accessed 04/16/2013).

Tang, Y.P., et al. 2009. Effect of a mangosteen dietary supplement on human immune function: a randomized, double-blind, placebo-controlled trial. J Med Food. 12(4): 755-63. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19697997

Westerterp-Plantenga, M.S. & Kovacs, E.M.R. The effect of (-)-hydroxycitrate on energy intake and satiety in overweight humans. International Journal of Obesity. 26: 870-872. URL : http://www.ncbi.nlm.nih.gov/pubmed/12097679 (accessed 04/24/2013).

Williams, P., et al. 1995. Mangostin inhibits the oxidative modification of human low density lipoprotein. Free Radic Res. 23(2): 175-84. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7581813 (accessed 04/24/2013).

Yu, L., et al. 2007. Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chemistry. 104(1): 176-81. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S030881460600882X (accessed 03/20/2013).

Zarena, A. S., Sankar, K. U. 2009. A study of antioxidant properties from Garcinia mangostana L. pericarp extract. Acta Sci. Pol., Technol. Aliment. 8(1): 23-34. URL: http://www.food.actapol.net/pub/3_1_2009.pdf (accessed 03/20/2013).

Green Tea Extract

Brown, A., et al. 2011. Health effects of green tea catechins in overweight and obese men: A randomised controlled cross-over trial. Br. J. Nutr. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21736785 (accessed 10.21.2011).

Jeukendrup, A., & Randell, R. 2011. Fat burners: Nutrition supplements that increase fat metabolism. Obes. Rev., 12 (10), 841-851. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21951331 (accessed 10.25.2011).

Sae-tan, S., et al. 2011. Weight control and prevention of metabolic syndrome by green tea. Pharmacol. Res., 64 (2), 146-154. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21193040 (accessed 10.21.2011).

Reinbach, H., et al. 2009. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin. Nutr., 28 (3), 260-265. URL (abstract): http://www.clinicalnutritionjournal.com/article/S0261-5614(09)00023-5/fulltext (accessed 04.02.2013).

Bose, M., et al. 2008. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr., 138 (9), 1677-83. URL: http://jn.nutrition.org/content/138/9/1677.long (accessed 10.21.2011).

Boschmann M and Thielecke F. 2007. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr. 26(4):389S-395S. URL: http://www.jacn.org/content/26/4/389S.full?sid=2ff39e8c-0b65-441b-977b-60a30cb3b729 (accessed 04.02.2013).

Belza A, Jessen AB. 2005. Bioactive food stimulants of sympathetic activity: effect on 24-h energy expenditure and fat oxidation. Eur J Clin Nutr. 9(6):733-41. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/15870822 (accessed 04.02.2013).

Kovacs, E., et al. 2004. Effects of green tea on weight maintenance after body-weight loss. Br. J. Nutr. 91, 431–437. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/15005829 (accessed 04.02.2013).

Nagao, T., et al. 2005. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr. 81:122–9. URL: http://ajcn.nutrition.org/content/81/1/122.long (accessed 04.02.2013).

Rumpler W., et al. 2001. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr. 2001;131:2848–52. URL: http://jn.nutrition.org/content/131/11/2848.long (accessed 04.02.2013).

Dulloo AG et al. 1999. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 70(6):1040-5. URL: http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=10584049 (accessed 04.02.2013).

Dulloo AG et al. 2000. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord. 24(2):252-8. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/10702779 (accessed 04.02.2013).

Alpha Lipoic Acid

Anuradha, B. & Varalakshmi, P. 199. Activities of glucose-metabolizing enzymes in experimental neurotoxic models with lipoate as an alleviator. J Appl Toxicol. 19(6):405-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10547622 (accessed 04.08.2013).

Arivazhagan, P., et al. 2001 Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem Biol Interact. 138(2): 189-98. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11672700 (accessed 04.08.2013).

Butler, J.A., et al. 2009. Lipoic acid improves hypertriglyceridemia by stimulating triacylglycerol clearance and downregulating liver triacylglycerol secretion. Arch Biochem Biophys. 485(1):63-71. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19232511 (accessed 04.10.2013).

Chen, W.L., et al. 2012. Alpha-lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase. Diabetologia. 55(6):1824-35. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22456698 (accessed 04.10.2013).

Cheng, P.Y., et al. 2011. Reciprocal effects of alpha-lipoic acid on adenosine monophosphate-activated protein kinase activity in obesity induced by ovariectomy in rats. Menopause. 18(9): 1010-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21505371 (accessed 04.10.2013).

Femiano, F., et al. 2004. Burning Mouth Syndrome: open trial of psychotherapy alone, medication with alpha-lipoic acid (thioctic acid), and combination therapy. Med Oral. 9(1):8-13. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14704612 (accessed 04.11.2013).

Gupte, A.A., et al. 2009. Lipoic acid increases heat shock protein expression and inhibits stress kinase activation to improve insulin signaling in skeletal muscle from high-fat-fed rats. J Appl Physiol. 106(4):1425-34. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19179648 (accessed 04.10.2013).

Kim, M. S., et al. 2004. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med. 10(7): 727-33. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15195087 (accessed 04.08.2013).

Koh, E. H., et al. 2011. Effects of alpha-lipoic acid on body weight in obese subjects. Am J Med. 124(1): 85.e1-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21187189 (accessed 04.08.2013).

Konrad, T., et al. 1999. Alpha-Lipoic acid in treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care. 22(2):280-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10333946 (accessed 04.11.2013).

Lee, W.J., et al. 2005. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 332(3): 885-91. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15913551 (accessed 04.10.2013).

Lee, W. J., et al. 2005. Obesity: The role of hypothalamic AMP-activated protein kinase in body weight regulation. Int J Biochem Cell Biol. 37(11):2254-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16085448 (accessed 04.10.2013).

Lee, W.J., et al. 2005. Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler Thromb Vasc Biol.25(12):2488-94. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16224049 (accessed 04.10.2013).

Mantovani, G., et al. 2006. A phase II study with antioxidants, both in the diet and supplemented, pharmaconutritional support, progestagen, and anti-cyclooxygenase-2 showing efficacy and safety in patients with cancer-related anorexia/cachexia and oxidative stress. Cancer Epidemiol Biomarkers Prev. 15(5): 1030-4. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16702388 (accessed 04.08.2013).

Marshall, A.W., et al. Treatment of alcohol-related liver disease with thioctic acid: a six month randomized double-blind trial. Gut. 23(12): 1088-93. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/6129179 (accessed 04.11.2013).

McNeilly, A.M., et al. Effect of alpha-lipoic acid and exercise training on cardiovascular disease risk in obesity with impaired glucose tolerance. Lipids Health Dis. 10:217. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22107734 (accessed 04.11.2013).

Mijnhout, G.S., et al. 2010. Alpha lipoic acid: a new treatment for neuropathic pain in patients with diabetes?. Neth J Med.68(4): 158-62. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20421656 (accessed 04.11.2013).

Muthuswamy, A.D., et al. 2006. Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: role of L-carnitine and DL-alpha lipoic acid. Clin Chim Acta. 368(1): 84-92. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16480704 (accessed 04.08.2013).

Nagamatsu, M., et al. 1995. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 18(8): 1160-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7587852 (accessed 04.08.2013).

Packer, L., et al. 1995. Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine. 19(2): 227-250. URL (abstract): http://dx.doi.org/10.1016/0891-5849(95)00017-R (accessed 04.15.2013).

Park, K.G., et al. 2008. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. Hepatology. 48(5): 1477-86. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18972440 (accessed 04.10.2013).

Pershadsingh, H.A. 2007. Alpha-lipoic acid: Physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs. 16(3): 291-302. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17302524 (accessed 04.08.2013).

Ramos, L.F., et al. 2011. Effects of combination tocopherols and alpha lipoic acid therapy on oxidative stress and inflammatory biomarkers in chronic kidney disease. J Ren Nutr. 21(3): 211-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21185738 (accessed 04.11.2013).

Saraswathi, R. & Devaraj, S. N. 2013. Oxidative stress in skeletal muscle impairs mitochrondrial function in alloxan induced diabetic rats: Role of alpha lipoic acid. Biomedicine & Preventive Nutrition. [Epub ahead of print]. URL (abstract): http://www.sciencedirect.com/science/article/pii/S2210523912000499 (accessed 04.15.2013).

Wiznitzer, A., et al. 1999. Lipoic acid prevention of neural tube defects in offspring of rats with streptozocin-induced diabetes. Am J Obstet Gynecol. 180(1 Pt 1): 188-93. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9914602 (accessed 04.08.2013).

Xiao, C., et al. 2011. Short-term oral alpha-lipoic acid does not prevent lipid-induced dysregulation of glucose homeostasis in obese and overweight nondiabetic men. Am J Physiol Endocrinol Metab. 301(4): E736-41. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21750266 (accessed 04.11.2013).

Zembron-Lacny, A., et al. 2009. Assessment of the antioxidant effectiveness of alpha-lipoic acid in healthy men exposed to muscle-damaging exercise. J Physiol Pharmacol. 60(2): 139-43. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19617657 (accessed 04.11.2013).

L-Carnitine

Arenas, J., et al. 1991. Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training and L-carnitine administration. Muscle Nerve. 14:598–604. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1922166 (accessed 04.03.2013).

Benvenga, S. 2005. Effects of L-carnitine on thyroid hormone metabolism and on physical exercise tolerance. Horm. Metab. Res., 37 (9), 566-571. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16175496 (accessed 10.25.2011).

Bremer, J. 1990. The role of carnitine in intracellular metabolism. J Clin Chem Clin Biochem. 28(5):297–301. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2199593 (accessed 04.03.2013).

Bremer, J. 1983. Carnitine – metabolism and functions. Physiol Rev. 63(4):1420-1480. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/6361812 (accessed 04.03.2013).

Guzman-Guillen, R., et al. 2013. The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). Aquat Toxicol. 132-133C:141-150. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23501490 (accessed 04.03.2013).

Ho, J.Y., et al. 2010. L-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. Metab 59:1190–1199. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/20045157 (accessed 04.02.2013).

Kraemer, W., et al. 2008. L-carnitine supplementation: influence upon physiological function. Curr. Sports Med. Rep., 7 (4), 218-223. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18607224 (accessed 10.25.2011).

Kraemer, W.J., et al. 2006. Androgenic Responses to Resistance Exercise: Effects of Feeding and L-Carnitine. Med Sci Sports Exerc. 38(7):1288-1296 URL(abstract): http://www.ncbi.nlm.nih.gov/pubmed/16826026 (accessed 04.03.2013).

Kraemer, W.J., et al. 2005. L-Carnitine Supplementation: A New Paradigm for its Role in Exercise. Chemical Monthly. 136:1383–1390. URL (abstract): http://link.springer.com/content/pdf/10.1007%2Fs00706-005-0322-y#page-1 (accessed 04.03.2013).

Kraemer, W.J., et al. 2003. The effects of L-carnitine l-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res. 17(3):455–462. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12930169 (accessed 04.03.2013).

LeBlanc, P.J., et al. 2004. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol. 97:2148–2153. URL: http://jap.physiology.org/content/97/6/2148.full (accessed 04.03.2013).

Li, J. & Yu, X.Y., 2012. [Effects of exogenous carnitine on function of respiratory chain and antioxidant capacity in mitochondria of myocardium after exhaustive running in rats]. [Article in Chinese]. Zhonggui Ying Yong Sheng Li Xue Za Zhi. 28(5):405-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23252290 (accessed 04.03.2013).

Nüesch, R., et al. 1999. Plasma and urine carnitine concentrations in well-trained athletes at rest and after exercise. Influence of L-carnitine intake. Drugs Exptl Clin Res 25(4):167–17. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10442273 (accessed 04.03.2013).

Pekala, J., et al. 2011. L-Carnitine — metabolic functions and meaning in humans’ life. Curr. Drug Metab. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21561431 (accessed 10.25.2011).

Spiering, B.A., et al. 2008. Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise. J. Strength Cond Res. 22(4):1130–1135 URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18545197 (accessed 04.03.2013).

Spiering, B.A., et al. 2007. Responses of criterion variables to different supplemental doses of l-carnitine l-tartrate. J Strength Cond Res. 21(1):259–264. URL (abstract): http://journals.lww.com/nsca-jscr/Abstract/2007/02000/Responses_of_Criterion_Variables_to_Different.46.aspx (accessed 04.03.2013).

Steiber, A., et al. 2004. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 25 (5-6):455–473. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15363636 (accessed 04.03.2013).

van Loon, L.J.C., et al. 2001. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 536 (1): 295–304. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2278845/ (accessed 04.03.2013).

Volek, J.S., et al. 2008. Effects of carnitine supplementation on flow-mediated dilation and vascular inflammatory responses to a high-fat meal in healthy young adults. Am J Cardiol. 102 (10):1413–1417. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18993165 (accessed 04.03.2013).

Volek, J.S., et al. 2002. L-carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 282:E474 – E482. URL: http://ajpendo.physiology.org/content/282/2/E474.full (accessed 04.03.2013).

Wall, B.T., et al. 2011. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589(4):963–973. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060373/ (accessed 04.02.2013).

Zambrano,S., et al. 2012. The renoprotective effect of L-carnitine in hypertensive rats is mediated by modulation of oxidative stress-related gene expression. Eur J Nutr. 2012 Dec 6 [Epub ahead of print]. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23223967 (accessed 04.03.2013).

WheySational

Our WheySational is formulated to be complete, natural, bioavailable, and manufactured to pharmaceutical standards.

The following articles and studies, arranged in order of recency, represent a sampling of the research on the constituents of WheySational.

Phaseolus vulgaris (white kidney bean)

Dominika, S., et al. 2011. The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol., 145 (1), 267-272. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21276631 (accessed 10.18.2011).

Geraedts, M., et al. 2011. Intraduodenal administration of intact pea protein effectively reduces food intake in both lean and obese male subjects. PLoS One, 6 (9), e24878. URL: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0024878 (accessed 10.18.2011).

Häberer, D., et al. 2011. Intragastric infusion of pea-protein hydrolysate reduces test-meal size in rats more than pea protein. Physiol. Behav., 104 (5), 1041–1047. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21763707 (accessed 10.18.2011).

Li, H., et al. 2011. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J. Ag. Food Chem., 59 (18), 9854–9860. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21854068 (accessed 10.18.2011).

Marinangeli, C., & Jones, P. 2011. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br. J. Nutr., 105 (1), 110-117. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20807459 (accessed 10.25.2011).

Ndiaye, F., et al. 2011. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21442413 (accessed 10.18.2011).

Geraedts, M., et al. 2010. Release of satiety hormones in response to specific dietary proteins is different between human and murine small intestinal mucosa. Ann. Nutr. Metab., 56 (4), 308–313. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20530962 (accessed 10.18.2011).

Rigamonti, E., et al. 2010. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism. Mol. Nutr. Food Res., 54 (Suppl. 1), S24-S30. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20077421 (accessed 10.18.2011).

Swiatecka, D., et al. 2010. Impact of glycated pea proteins on the activity of free-swimming and immobilised bacteria. J. Sci. Food Agric., 90 (11), 1837-1845. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20549652 (accessed 10.18.2011).

Diepvens, K., et al. 2008. Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. Int. J. Obes. (Lond.), 32, 510–518. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18345020 (accessed 10.18.2011).

Spielmann, J., et al. 2008. Dietary pea protein stimulates bile acid excretion and lowers hepatic cholesterol concentration in rats. J. Anim. Physiol. Anim. Nutr. (Berl)., 92 (6), 683-693. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19012614 (accessed 10.18.2011).

X Whelan, K., et al. 2006. Appetite during consumption of enteral formula as a sole source of nutrition: The effect of supplementing pea-fibre and fructo-oligosaccharides. Br. J. Nutr., 96 (2), 350-356. URL: http://www.limnology-journal.org/download.php?file=%2FBJN%2FBJN96_02%2FS0007114506002133a.pdf&code=d63461b479aa85362cf84720c13bb8d5 (accessed 10.25.2011).

Whey protein

Acheson, K., et al. 2011. Protein choices targeting thermogenesis and metabolism. Am. J. Clin. Nutr., 93 (3), 525-534. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21228266 (accessed 10.25.2011).

Baer, D., et al. 2011. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J. Nutr., 141 (8), 1489-1494. URL (abstract): http://jn.nutrition.org/content/early/2011/06/15/jn.111.139840.abstract (accessed 10.25.2011).

Geraedts, M., et al. 2011. Intraduodenal administration of intact pea protein effectively reduces food intake in both lean and obese male subjects. PLoS One, 6 (9), e24878. URL: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0024878 (accessed 10.18.2011).

Graf, S., et al. 2011. Effects of whey protein supplements on metabolism: Evidence from human intervention studies. Curr. Opin. Clin. Nutr. Metab. Care, 14 (6), 569-580. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21912246 (accessed 10.25.2011).

Josse, A., et al. 2011. Increased consumption of dairy foods and protein during diet-and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J. Nutr., 141 (8), 1626–1634. URL: xxxxxxxxx (accessed 10.25.2011).

Pal, S., et al. 2010. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br. J. Nutr., 104 (5), 716-723. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20377924 (accessed 10.25.2011).

Walker, T., et al. 2010. The influence of 8 weeks of whey-protein and leucine supplementation on physical and cognitive performance. Int. J. Sport Nutr. Exerc. Metab., 20 (5), 409-417. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20975109 (accessed 11.09.2010).

Hayes, A., & Crib P. 2008. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr. Opin. Clin. Nutr. Metab. Care, 11 (1), 40-44. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18090657 (accessed 10.25.2011).

Katsanos, C., et al. 2008. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res., 28 (10), 651-658. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612691/?tool=pubmed (accessed 10.25.2011).

Wyatt, H., et al. 2008. Weight loss in a community initiative that promotes decreased energy intake and increased physical activity and dairy consumption: Calcium Weighs-In. J. Phys. Act. Health, 5 (1), 28-44. URL (abstract): xxxxxxxxxx (accessed 10.25.2011).

Hollis, J., & Mattes, R. 2007. Effect of increased dairy consumption on appetitive ratings and food intake. Obesity, 15 (6), 1520-1526. Erratum in: Obesity (Silver Spring). 2007 Oct;15(10):2520. URL (abstract): xxxxxxxxxxxxx (accessed 10.25.2011).

Bowen, J., et al. 2006. Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J. Clin. Endocrinol. Metab., 91 (8), 2913–2919. URL: (abstract): xxxxxxxxxxxxx (accessed 10.25.2011).

Burton-Freedom, B. Glycomacropeptide (GMP) is not critical to whey-induced satiety, but may have a unique role in energy intake regulation through cholecystokinin (CCK). Physiol. Behav., 93 (1-2), 379-387. URL (abstract): xxxxxxxxxxxxx (accessed 10.25.2011).

Crib P., et al. 2006. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int. J. Sport Nutr. Exerc. Metab., 16 (5), 494-509. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18090657 (accessed 10.25.2011).

Bowen, J., et al. 2006. Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J. Clin. Endocrinol. Metab., 91 (8), 2913-2919. URL: http://jcem.endojournals.org/content/91/8/2913.long (accessed 10.18.2011).

Phillips, S., et al. 2005. Dietary protein to support anabolism with resistance exercise in young men. J. Am. Coll. Nutr., 24 (2), 134S-139S. URL: http://www.jacn.org/content/24/2/134S.long (accessed 10.25.2011).

Dangin, M., et al. 2003. The rate of protein digestion affects protein gain differently during aging in humans. J. Physiol., 549, 635–644. URL: http://jp.physoc.org/content/549/2/635.full (accessed 10.25.2011).

Dangin, M., et al. 2001. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab., 280 (2), E340–E348. URL: http://ajpendo.physiology.org/content/280/2/E340.full (accessed 10.25.2011).

Guar gum

Lyly, M., et al. 2009. Fibre in beverages can enhance perceived satiety. Eur. J. Nutr., 48 (4), 251-258. URL (abstract): x (accessed 10.25.2011).